
NASA TECHNICAL TRANSLATIOt!

/ IS / / _ '

/
NASA TT - 20357

SPOCK--A TOOL FOR REAL TIME ARTIFICIAL INTELLIGENCE

J. P. LaCroix, G. A. Berthon, F. Fages, P. Repusseau

b

i

Translation of "Spock, un Outil pour 'l'Intelligence
t

Artificielle Temps Reel", AGARD, 55th Meeting of the

Avionics Panel of Software and Engineering and its

Application to Avionics. Held in Cesme, Turkey, April

25-29, 1988

IIEICIAL IE'IEII. I£bCE | _l'cl) 17 pcSCL 09b

G_/b3

_89-1053q

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASIIINGTON, D. C. 20546 AUGUST1988

SPOCK -A TOOL FOR REAL TIME ARTIFICIAL INTELLIGENCE

J.P. LACROIX; G.A. BERTHON; F. FAGES; P.REPUSSEAU
Thomson-Csf AVG
31 Rue Camille Desmoulins

92130 Issy-les-Moulineaux France

Thomson-Csf LCR
Domaine de Corbeville
BP 10

91401 Orsay France (F. Fages)

Abstract: Airborne expert systems must take into account very harsh real time conditions which, when

combined with the environmental conditions of the object computer, require the development of new

solutions. The proceduralization obtained by compiling the RETE algorithm toward symbolic, procedural,

or real-time oriented target languages provides a solutionto the primary problems of airborne applications:

speed requirements, memory control, harmonization of symbolic parts with the traditional portions of the

applications. This approach is supported by the SPOCK family of tools (-LISP, -C, -LTR3, -ADA) developed

by the Central Research Laboratory of Thomson-Csf which offerssignificant improvements over presently

available products. One of the SPOCK applications inThomson-Csf is a helicopter mission aid system

which takes into consideration the threats and terrain thanks to integration with an airborne cartographic

data base.

1 CONDITIONS OF REAL-TIME AIRBORNE EXPERT SYSTEMS

The operational use of expert systems in airborne militaryapplications must take into account the

specificities of these applications and the object computers must be suited to the severe environmental

conditions encountered.

In the case of the expert system portion the following needs arise:

Analysis of the situation and real-time decision making in the avionic sense of the term (less than 0.1

second)

Consideration of the time and space aspects in the reasoning

Ability to process truncated or incomplete informatk)n

Coexistence/mergingwith conventional application_; or processing

(algorithmics/computations/input-output management, etc.)

For the airborne machine the requirements are to offer the _ollowing items inthe smallest possible volume,

with the lowest possible power consumption, and under stressfultemperature and vibrations conditions:

Extended memory capacities

Very high processing capabilities compared to traditional processing needs.

2 POSSIBLE SOLUTIONS

In order to satisfy the processing needs three different appMoachescan be considered:

2.1 RAW POWER

In this case the object computer has the greatest possible computing power (a few MIPS or more) in virtue

of the equivalency between an inference and a few tens of traditional instructions. The expert system itself is

written in a conventional language, such as Pascal or C, or possibly a real time language such as LTR3 or

ADA.

ADVANTAGES:

No expensive mechanism for memory recovery to be developed

Easy integration with the rest of the application whic_ is also written in a language of this type.

2

DRAWBACKS:

Very poor symbolic development environment in th_ case of the languages mentioned

Difficulty or complexity in creating certain parts of the expert system

Doubts as to this approach's ability to create powerful "symbolic" applications.

Example: HEXSCON expert system by SRI.

2.2 PURE SYMBOLIC

2.2.1 On a Traditional Machine

This is an approach based on the preceding machine philosophy with the use of a symbolic type language

(COMMON-LISP, PROLOG, etc.) compiled for better performance.

ADVANTAGES:

The development environment is very rich.

The performance can be very good under certain conditions (no activated memory recovery).

2

DRAWBACKS:

Since these machines do not have any hardware memory recovery mechanisms, they have to stop all

processing during variable intervals (depending on the size of the installed memory and the problem

being processed) and are of little use to real time applications.

The software interfaces with the traditional language.'; are not very practical.

EXAMPLES: SUN development stations (type 3-xxx), TECTRONIX, HP, etc.

2.2.2 Dedicated Architecture Machine

These machines are built around specialized architectures (association of tags with data, hard-wired

memory recovery, mechanisms adapted to the specificities of the language, etc.) for symbolic languages.

They can be used for airborne artificial intelligence provided that they are freed of their development

environment to be made into object computers.

ADVANTAGES:

- The machine identity of development/object computer ensures the repeatability of the performance

characteristics from the laboratory to the application.

DRAWBACKS:

The same as in paragraph ?. for the software

The need to reduce the size of the computer for extensive integration actions.

EXAMPLES:

Compact Lisp Machine by TEXAS with VLSI LISP (MEGACHIP)

SYMBOLIC machines with the new VLSl ("IVORY")

For these products restricted access to military versions is not ensured by either of the manufacturers.

2.3 PROCEDURALIZATION

This approach is developed by the Central Research Laboratory of Thomson-Csf and applied in the group's

"military" Divisions. Its asset is that is eliminated two troub!esome points for airborne artificial intelligence

applications:

interfacing between symbolic and traditional languages

the need for memory recovery in the computer.

The methodology is based on a high-level tool belonging to the SPOCK generic family which enables

proceduralization of the expert systems.

3

3

3

ADVANTAGES:

total memory management

target language C or ADA: easy interfacingwith the conventional portion of the application

porting over to traditional computers.

RESERVATIONS:

this tool is presently in the prototype stage.

THE SPOCK TOOL

Spock isthe result of research at the "Expert System" laboratory of the Central Research Laboratory of

Thomson-Csf conducted on the compiling of the basic knowledge to meet the needs of the military

branches of Thomson-Csf for real time expert systems.

The compiling of rules appeared to be the key to obtaining high performance. THe approach followed

enables total proceduralization of the rule language (first order logic) in the target language.

The REFE algorithm (basic principle of OPS-V, ART, and Knowledge-Craft) was expanded to totally compile

the path of the filtering network in the code corresponding to the target language. Different target

languages can be addressed: LISP and C are available, while LTR3 and ADA are currently being worked on.

SPOCK is:

An executive of expert systems satisfying the needs of real time applications by means of two services

offered:

control over memory allocation without the need for a "garbage collector'

primitives for communication with the outside.

SPOCK is the heir to:

OPS-V

_r

_t

ART

ML

it

Predominance of forward chaining in the rules

representation of objects with vectors

filtering with the RETE algorithm

philosophy of integrating several paradignls in a core of type OPS-V

prototyping language used for writing the rule compiler

4

SPOCK has some original points:

the rules concern abstract objects which can be represented by any structure of the target language

(defstruct or flavors in LISP, record inADA, struct in (3, etc.)

total compiling of rules:the RETE network does not {;xist at run time, the path of the network has

been compiled

"garbage-free" running guaranteed so long as the rulgsdo not explicitely invoke LISP

rules provided with a digital priority ineither static or dynamic form, cad calculated from the variables

of the left member of the rule

versatile representation of objects suitable for subse_:luentinstallation of hypothesis management

mechanisms

optimum compiling of the existentialquantifier; possibility of resequencing the premises in the rules

to optimize the tests performed upon running based on usage statistics

invoking of a communication function after each inference cycle to take into account external events

or to manage a schedule

4

5

SPOCK performs well:

A comparison of SPOCK with other tools with regard to the solving of a planning problem used by NASA to

quantify the performance of such tools and the machines w,hich support them ("Monkey and bananas," 30

rules) yielded the following results:

OUTIL
(version)
TOOL

SPOCK-C
(Vl)

SPOCK-C

(Vl)

SPOCK-Lisp
(Vl)

SPOCK-Flavors
(Vl)

ART
(v2)

OPS-V
(DEC V2)

OPS-V
_For_yV21

ART
(V2)

MACH [NE
(m_moire)

(memory)

SUN (RISC)
4-260

SUN
3-160(4Mo)

SUN
3-160(4Mo)

SYMBOLICS
3620(8Mo)

SYMBOLICS
3640(4Mo)

VAX

11/780

SYMBOLICS
3640(4Mo]

TI Explorer
(4Mo)

Nb r_gles
d_clench_es
Fired rules

Temps en
secondes
Time(s)

Nb r_gles

par sec.
Fired rules/s

82

82

82

82

86

81

81

86

0.03

0.14

0.18

0.31

1.2

1.3

1.7

2.4

2733

586

455

259

72

62

48

36

Programming of rules for tools other than SPOCK was cor, ducted by NASA.

Comments:

The performance comparison between SPOCK and OPS-V has two explanations:

in OPS-V the filtering network is represented in the form of an interpreted microprogram, whereas for

SPOCK the network path is totally compiled

- the processing of object deletions and modification.'_ in SPOCK is an original variation of the RETE

algorithm with, in addition, modification of objects "(:}nlocation," that is, without copying, contrary to

OPS-V.

These same reasons partially explainthe advantage of SPOCK over ART; another part is attributable to the

lightening of certain processes in SPOCK compared to ART (for example, no uniqueness test for each

insertion); on the other hand, certain operational acceleration solutions in ART (search in local memory

through dynamic chopping on the equality tests, for example) are still not implemented in SPOCK.

The SPOCK-Lisp times depend on the representation of the objects to which the rules apply. With

SYMBOLICS, better results could have been obtained by using "defstruct" rather than "flavors."

6

The similarity between the $POCK-Lisp and SPOCK-C performance in this test is due to the absenve of

arithmetic operations which, in LISP, would require type te.,;ts while running.

3.1 SPOCKINFERENCE CYCLE

SPOCK's inference cycle includes four phases:

a filtering phase (1) (pattern matching) which, from the current set of objects (working memory) and

the fixed set of rules, determines all the rules instantiated, that is, uplets? of the type: (rule, object1

objectN) formed by the name of a rule and a combination of objects which satisfies the left member of

the rule.

a selection phase (2) (conflict resolution) which determines the rule instance of highest priority; in the

case of equal priorities the choice is random.

a tripping phase (3) which consists in executing the dght portion of the rule selected on the objects of

the instance whose effect is to modify all the objects and/or to communicate actions to the outside

world.

5

a communication phase (4) which consists in executing the communication function; this function,

which performs nothing by default, is to be redefined by the user, for example to subordinate a clock

object to an external clock, take into account external modifications (data acquisition in real time),

manage a schedule, etc.

Operation of the Inference Cycle:

SPOCK incrementally calculates all the rules instantiated in each inference cycle. Filtering phase 1 therefore

corresponds to updating operations on all the conflicts which actually occur after each modification of the

set of objects, that is, during phases 3 and 4.

In the initial state the set of objects and the set of rules instantiated are empty. Upon initialization several

objects are inserted into the working memory, which can cause instantiation of several rules that are placed

on the agenda. At the beginning of the inference cycle, the highest priority instance is triggered: these

actions can possibly modify the working memory -- and consequently the agenda through filtering -- and the

cycle is continued until one of the following conditions arises:

during the selection stage the agenda is empty: the cycle stops

during phases 3 or 4 the "halt" function is invoked: the cycle will stop during the following selection

phase

- during any one of the phases, if an interruption OCCL_rs(break or error): the cycle stops immediately.

In the last case above resuming of the cycle is possible through the "restart" function provided that a

coherent state is restored by invoking the "clearandmatch' function.

7

In the case of real time expert system applications, the inference cycle is to be included in a more general

waiting or external-data-management loop which allows the inference cycle to be rebooted automatically.

3.2 OBJECTS MANAGED BY SPOCK

The objects to which pertain the rules are structures provided with abstract operations for creation, type

testing, inspection, and assigning of attributes. In LISP the objects can be represented by any structure

defined by "de f s t ruct" or an extension by objects provided with active values, procedural attaching,

multiple inheritance, etc., such as Flavors, for example.

The rules are generic and function independently of all the characteristics of the application objects.

In versions 2 and 3 of SPOCK the logical assertions can be represented by means of facts verifying a

uniqueness test; the facts are internal objects which, contrary to abstract objects, cannot be shared with the

rest of the application.

An example of objects is given under heading 4.2.2.

3.3 RULES MANAGED BYSPOCK

Their complexity varies according to the successive versions of SPOCK.

Version 1of SPOCK has rules of the forward chaining type The rules have a name, a priority, a left portion,

and a right portion.

The left portion expresses a condition on the working memory (in a logical type language of the first order).

The right portion expresses the actions to be taken when the left portion is true.

A rule is similar to a logical implication of the following type:

o1:tl... _k °k:tk + actions

inwhich the objects o i of type t i are quantified by micror_ i universally, existentially, or negatively.

The types of objects are expressed by diagrams (patterns).

Examples of rules are given under heading 4.2.3.

Version 2 of SPOCK offers in addition a Truth Maintenance System and structuring of the rule data base in

packs.

Version 3 will offerfunctions for structuring all the facts in_ hierarchy of contexts and parallel exploring of

several hypotheses.

6

8

3.3.1 LEFT MEMBERS OFTHE RULES

The left member of a rule is a conjunction of conditions.

A condition can be:

a diagram quantified universally, existentially, or neg_tively

a call to LISP corresponding to a condition which is ,,_tisfied if the result is different from nil, and is

false otherwise

a link of a variable to the value of a LISP expression corresponding to a condition which is always

satisfied (in order to store the result of an intermediale computation).

By default, the diagrams are universally quantified.

The existential quantification is identified syntactically by the key word exists in front of the diagram.

Negation is identified by the key work not.

For example: CondttlonsLlst :

condltioo:

condition
CondltlonsLlstcondition;

pattern
s)nnbol':'patter_
EXISTS pattern
NOT pattern
STRING
symbol'='STRING;

A diagram expresses a type of object in the form of a conjt_nction of tests.

The first test concerns the structure to which the object belongs. This test is compiled with the LISP

predicate typep which is true if the object is an instance of the structure or an extension of the structure.

The other tests pertain to the fields of objects or to the object as a whole.

The tests on a field follow the name of the field; they are composed of:

either a predefined predicate and a value (constant, variable, or LISP expression)

or a call to LISP in the form ' predicat arg2.., argN which is compiled as (predicat

argl arg2.., argN) where argl is the value of the field.

The tests on the object as a whole are possible in the calls to LISP identified by the word ca 11 within the

diagram. To do this all that need be done is to have the variable self, which is connected with the object

being tried for the diagram, appear in the LISP expression

9

3.3.2 CONVENTION FOR THE ORDER OF THE TESTS

The rule compiler does not change the order of the premises in the rules nor the order of the tests in the

diagrams.

The compiler divides all the network nodes that can be made common to several rules without disturbing

the order of the tests.

3.3.3 THE RIGHT HAND MEMBERS OF THE RULES

The right hand members represent sequences of actions to be performed in the environment of the

variables linked by the left members. An action can be:

any LISP expression

a link of intermediate variables to any values using bind

a predefined action for modifying the working mem¢_ry:

* insertion of a new object

* deletion of an object

* modification of an object with and without filtering

7

3.3.4 PRIORITIES IN RULES

Prioritiesare whole or real numerical values.

The priority of a rule can be static or dynamic.

Dynamic prioritiesare defined by:

the value of a linkedvariable in the left member

any LISP expression that can pertain to the linked variables of the left member.

The dynamic prioritiesare evaluated during the filtering phase as soon as a rule instance is found.

The static priorities are defined by a whole or predefined constant (maximum, minimum,

immediate-firing).

The immediat e-f i r in g constant indicates that the rule is triggered as soon as an instance is found.

The rules using this priority must comply with some usage precautions and be reserved for simple actions.

4 APPLICATION OF SPOCK: TACTICAL ASSISTANT

The work in progress must first arrive at an assistance tool for reconaissance-type mission preparation

using light helicopters, then later result in a navigation aid ina field of threats, taking into account the terrain

by means of an airborne cartographic data base.

10

The expertise is concentrated ina Head Pilot of the Army LightAviation (ALAT).

The problems to deal with are:

taking into account of intervisibilitybetween the helicopter and the possible threats (with better

possible usage of the terrain)

helicopter-target intervisibility(inthe event of firing)

generation of paths

- control of path generation taking into account the threats, terrain, and compliance with the mission

(time, target).

In order to demonstrate the validityof SPOCK for this type of problem, a model simulator based on a

toponymic description of a geographical zone was made on the SYMBOLICS machine.

4.1 SIMULATOR FOR THE TACTICAL ASSISTANT

4.1.1 INPUT PARAMETERS

The user defines:

the start position of the helicopter

the speed of the helicopter

the final destination

the various threats symbolized by:

* their name

* their position

* their range

the environment evolution rules

* maintaining of of targets (generally reach :he destination)

* coherence of the decisions taken with the environment (avoid threats, for example).

8

4.2 SIMULATION METHOD

4.2.1 TAKING INTO ACCOUNT THE TIME ELEMENT

Simulation of time is obtained by management of a clock-type object which includes the Time information.

The Time is incremented according to a minimum priority rule when all the objects in the system have been

processed for the current Time instant.

11

The movement of the mobile objects is obtained inthe same way by a minimum priority rule when the object

is found to be late with respect to the Time variable. Thanks; to this minimal priority the movement is not

made until all the movement adjustment parameters (speed and direction) have been positioned.

4.2.2 STRUCTURE OF OBJECTS

The simulation implements four types of objects (Flavors):

Helicopter

Destination

- Obstacle(s)

- Clock

These objects are constructed from an inheritance of the following basic objects:

TITLE: NAME field

CLOCK: TIME field

DIMENSION: RANGE field

field X)

field Y) position in the horizontal plane

field Z altitude

POSITION:

SPEED:

* field Vx) variation in horizontal

* field Vy) position for each movement

* field Zz variation in altitude for each movcment

The final objects are constructed by inheritance:

OBJECT inherited from:

* TITLE

* POSITION

- MOBILITY inherited from:

* SPEED

* CLOCK

MOBILE-OBJECT inherited from:

* OBJECT

* MOBILITY

12

HELICOPTER inherited from MOBILE-OBJECT

DESTINATION inherited from OBJECT

OBSTACLE inherited from:

* OBJECT

* DIMENSION

NOTE: The real threats would be of the MOBILE-OBSTACLE type.

9

4.2.3 RULES FOR SITUATION EVOLUTION

The rules are formulated by the macrocommand DEFRULE which has as arguments:

The Name of the rule (reusable by the plotting and program execution control tools)

The Priority of the rule (used for the classification of the rule triggerings in the agenda)

The Body of the rule: premises and then conclusion_; linked with the symbol "->"

Time incrementation rule:

This rule takes into account only one object: the CLOCK.

(DEFRULE INCREMENTATION 0

H:=(HORLOGE TEMPS=Tps)

(MODIFY H TEMPS =(+1 Tps))

Object movement rule

(DEFRULE MOUVEMENT 0

O:=(OBJET-MOBILE
X=x

Y=y

Z=z

Vx=vx

Vy =vy

Vz=vz

TEMPS=tom)

(HORLOGE

TEMPS=Tps)

()Tps tom) :]'objet est en retard sir]e temps

(MODIFYO X=(+x vx)
Y=(+y vy)
Z=(+z vz)))

Rule for navigation toward target (destination)

In order to ensure that the helicopter is going to reach the _arget, its heading is compared with the bearing

of the straight line joining its current position to that of the target; an excessively large difference will result in

a heading modification to reduce the drift to a toleratable value.

13

(DEFRtlLEVERS-DESTINATION3
H:=(HELICOPTERE

X=x
Y=y
VX=VX

Vy=vy}
D:=(DESTINATION

X=dx
Y=dy}

(>(-(ATANvy vx)(ATAN (-dy y)(-dx x)))0.1}
-k

(MODIFY H X=(*(COS(ATAN (-dy y)(-dx x)))

(SQRT(+(* x x)(* y y)))
Y=(*(SIN(ATAN (-dyy)(-dx x)))

(SQRT(+(*x x)(* y y))}))

Rule for avoiding obstacles (threats)

In order to avoid an obstacle (threat) we firstly consider those found along the helicopter's path; avoidance

equals a change in heading.

The selection can be made according to two major criteria

the helicopter is located within the range of the threat

the helicopter will be within the range of the threat in k units of Time if it does not change its heading

(or speed or altitude).

The first criteria corresponds to the appearance of a threat either because the threat is mobile or because a

change in the terrain has led to an intervisibility between the helicopter and the threat; this criteria is not yet

taken into account in the simulator which uses the second criteria with k = 3.

10

Various path correction strategies can be implemented; it was decided that the direction of the tangent to

the threat's range circle would be taken as the new heading at the point where the path of the helicopter

would have crossed the threat's range circle.

14

(DEFRULE EVITE-OBSTACLE 2

H :=(HEL ICOPTERE
X=×

Y=y
VX=VX

Vy=vy)
O:=(OBSTACLE

X=ox

Y=oy
PORTEE=p)

((=(+(EXPT (- ox (+ x(* 2 vx)))2)
(EXPT (- oy (+ y(* 2 vy)))2))

(EXPT p 2))
.¢.

(MODIFY H
Vx=(* (SQRT (+(EXPT vx 2)(EXPT vy 2)))

(COS (+(ATAN (-oy y)(-ox x))

(*(SIGNUM(-(ATAN (-oy y)(-ox x))
(ATAN (vy vx)))

(/ P1 -2)}i))
Vy=(* (SQRT (+(EXPT vx 2)(E)PT vy 2))) "

(SIN (+(ATAN (-oy y)(-ox x))
(*(SIGNUM(-(ATAN (-oy y)(-ox x))

6ATAN (vy vx)))

(/PI -2))i))))

4.3 PERFORMANCE

For a limited number of obstacles (less than 30) we obtain a performance between 200 and 250 rules

triggered per second, which is perfectly coherent with the results obtained with the NASA benchmark (cf.

Table).

4.4 PLANNED IMPROVEMENTS

The simulator portion will take into account the notion of w)lume of threat and will be linked to the

cartographic data base equipment in order to take into account the terrain both for navigation as well as for

avoiding threats.

REFERENCES

[GD 87]

M. Ghallab, P. Dufresne -oInference motors for systems of production rules: compiling and interpretation

techniques. LAAS Toulouse, 1987.

[All other references already in English]

15

Report Document_tion Page

1, Report No. !- 2 G(wernment Accession No. 3. Recipient's Catalog No,

i [I

TT-20357 D -e--
4. Title and Subtitle A G

SPOCK--A TOOL FOR REAL TIME [U UST 1988
ARTIFICIAL INTELLIGENCE ORIGINAL PAGE IS 61T_r_o;_-_gS_;YationCode

OF POOR QUALITY
............... -8-[-Performing Organization Report No.

- 7. Author(s)

J. P. LaCroix, G. A. Berthon,
F. Fages, P. Repusseau t0 Work UnitNo

I
9. Performing Organization Name and Address

National Aeronautics and Space Admin:J.stration -1-1. Contract orGrantNo.

Washington, DC 20546 NASW-4307

12. Sponsoring Agency Name and Address

NATIONAL AERONAUTICS AND SPACE ADMINI,';TRATION

WASHINGTON, DC 20546

13. Type of Report and Period Covered

translation

_. Sponsoring Agency Code

15. Supplementary Notes

Transl. from FRENCH to ENGLISH of "i;pock, un Outil pour

l'Intelligence Artificielle Temps Reel", AGARD, 55th Meeting

of the Avionics Panel of Software a_d Engineering and its

Application to Avionics. Held in Cesme, Turkey, Apr. 25-29, 1988

Transl. by SCITRAN, Santa Barbara, CA 93150.

16. Abstract
Airborne expert systems must take into account very harsh real time

conditions which, when combined with the environmental conditions of

the object computer, require the development of new solutions. The

proceduralization obtained by compiling the RETE algorithm toward

symbolic, procedural, or real-time oriented target languages provide

a solution to the primary problems of airborne applications: speed

requirements, memory control, harmonization of symbolic parts with

the traditional portions of the ap_:lications. This approach is

supported by the SPOCK family of tcols (-LISP, -C,LTR3, -ADA)

developed by the Central Research I,aboratory of Thomson-Csf which

offers significant improvements over presently available products.

One of the SPOCK applications in TILomson-Csf is a helicopter

mission aid system which takes into consideration the threats and

terrain thanks to integrationwith an airborne cartographic data

base.

17. Key Words (Suggested by Authorls))

19. Security Classif. (of this report)

unclassified

i:3.Distribution Statement

/_, {_ e c, _' , ,'- • (_ < <

J, [.

-"_ " "' unclassified-unlimited

--%. C,assi,.,o,t,is Price

NASA FORM 1626 OCT 86

